Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 469: 133872, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447364

RESUMO

Microplastics (MPs) are of great concern to coral health, particularly enhanced biotoxicity of small microplastics (< 100 µm) (SMPs). However, their fate and harm to remote coral reef ecosystems remain poorly elucidated. This work systematically investigated the distributions and features of MPs and SMPs in sediments from 13 islands/reefs of the Xisha Islands, the South China Sea for comprehensively deciphering their accumulation, sources and risk to coral reef ecosystems. The results show that both MPs (average, 682 items/kg) and SMPs (average, 375 items/kg) exhibit heterogeneous distributions, with accumulation within atolls and dispersion across fringing islands, which controlled by human activities and hydrodynamic conditions. Cluster analysis for the first time reveals a pronounced difference in their compositions between the southern and northern Xisha Islands and resultant distinct sources, i.e., MPs in the north part were leaked mainly from local domestic sewage and fishing waste, while in the south part were probably derived from industrial effluents from adjacent countries. Our ecological risk assessment suggests that the ecosystem within the Yongle Atoll is exposed to a high-risk of MPs pollution. The novel results and proposed framework facilitate to effectively manage and control MPs and accordingly preserve a fragile biosphere in remote coral reefs.


Assuntos
Recifes de Corais , Poluentes Químicos da Água , Humanos , Ecossistema , Microplásticos , Plásticos , Monitoramento Ambiental , China , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
2.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203490

RESUMO

Pullulan, which is a microbial exopolysaccharide, has found widespread applications in foods, biomedicines, and cosmetics. Despite its versatility, most wild-type strains tend to yield low levels of pullulan production, and their mutants present genetic instability, achieving a limited increase in pullulan production. Therefore, mining new wild strains with robust pullulan-producing abilities remains an urgent concern. In this study, we found a novel strain, namely, Aureobasidium melanogenum ZH27, that had a remarkable pullulan-producing capacity and optimized its cultivation conditions using the one-factor-at-a-time method. To elucidate the reasons that drove the hyper-production of pullulan, we scrutinized changes in cell morphology and gene expressions. The results reveal that strain ZH27 achieved 115.4 ± 1.82 g/L pullulan with a productivity of 0.87 g/L/h during batch fermentation within 132 h under the optimized condition (OC). This pullulan titer increased by 105% compared with the initial condition (IC). Intriguingly, under the OC, swollen cells featuring 1-2 large vacuoles predominated during a rapid pullulan accumulation, while these swollen cells with one large vacuole and several smaller ones were prevalent under the IC. Moreover, the expressions of genes associated with pullulan accumulation and by-product synthesis were almost all upregulated. These findings suggest that swollen cells and large vacuoles may play pivotal roles in the high level of pullulan production, and the accumulation of by-products also potentially contributes to pullulan synthesis. This study provides a novel and promising candidate for industrial pullulan production.


Assuntos
Aureobasidium , Fungos , Glucanos , Fermentação
3.
Molecules ; 26(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833899

RESUMO

Although various geochemical and geophysical investigations have already indicated a great resource potential in the Xisha area of the South China Sea, the origin of organic matter and molecular evidence for tracing the migration of hydrocarbons from deep petroleum reservoirs are still lacking. In this study, systematic organic geochemical analyses, including bulk organic matter parameters and lipid biomarkers were performed for deep sediments from two cores. The C/N ratios and δ13C and δ15N values of organic matter in most of the samples, together with the maxima of short-chain n-alkanoic acids and mid-chain n-alkanols, high abundances of monounsaturated fatty acids C18:1ω9 and C22:1ω13, jointly indicate the dominance of marine organic matter. n-Alkanes in sediments from core GMGS4-XH-W06B are characterized by small unresolved complex mixture (UCMs) humps, high odd/even predominance (OEP) and carbon preference index (CPI) values, clearly exhibiting characteristics of modern sediments. However, the sediments for core GMGS4-XH-W03B are featured with big UCMs, associated with OEP and CPI values around 1.0, showing signatures of petroleum hydrocarbons from high maturity sources. Considering the geologic background, the biomarker signatures are solid evidence for indicating the existence of underlying petroleum reservoirs, and may provide the valuable information for assessing the hydrocarbon resources in the Xisha area.

4.
Sci Total Environ ; 760: 144316, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341640

RESUMO

Microplastic pollution in marine environments is of particular concern on its risk to the ecosystem. To assess and manage microplastic contaminants, their quantitative detection in environmental samples is a high priority. However, uncertainties of current methods still exist when estimating their abundances, particularly with fine-grained (<1 mm) microplastics. This work reports a novel thermoanalytical method for quantifying microplastics by measuring the contents of microplastic-derived carbon (MPC) in samples under the premise of nearly eliminating the limit of their particle appearances. After validating the method via samples with the spiked microplastics, we have conducted a case study on sediment core H43 that spanned 1925-2009 CE from the Yellow Sea for further illustrating the high reliability and practicability of this method for quantifying microplastics in natural samples. Our results have demonstrated that the proposed method may be a promising technique to determine the mass-related concentrations of the total microplastics in marine sediments for evaluating their pollution status and quantitative contribution to marine carbon storage.

5.
Biomolecules ; 10(1)2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947787

RESUMO

The bacterial diseases of tilapia caused by Streptococcus agalactiae have resulted in the high mortality and huge economic loss in the tilapia industry. Matrix metalloproteinase-9 (MMP-9) may play an important role in fighting infection. However, the role of MMP-9 in Nile tilapia against S. agalactiae is still unclear. In this work, MMP-9 cDNA of Nile tilapia (NtMMP-9) has been cloned and characterized. NtMMP-9 has 2043 bp and encodes a putative protein of 680 amino acids. NtMMP-9 contains the conserved domains interacting with decorin and inhibitors via binding forces compared to those in other teleosts. Quantitative real-time-polymerase chain reaction (qPCR) analysis reveals that NtMMP-9 distinctly upregulated following S. agalactiae infection in a tissue- and time-dependent response pattern, and the tissues, including liver, spleen, and intestines, are the major organs against a S. agalactiae infection. Besides, the proteolytic activity of NtMMP-9 is also confirmed by heterologous expression and zymography, which proves the active function of NtMMP-9 interacting with other factors. The findings indicate that NtMMP-9 was involved in immune responses against the bacterial challenge at the transcriptional level. Further work will focus on the molecular mechanisms of NtMMP-9 to respond and modulate the signaling pathways in Nile tilapia against S. agalactiae invasion and the development of NtMMP-9-related predictive biomarkers or vaccines for preventing bacterial infection in the tilapia industry.


Assuntos
Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Tilápia/genética , Sequência de Aminoácidos/genética , Animais , Composição de Bases/genética , Sequência de Bases/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Imunidade Inata/genética , Filogenia , Transdução de Sinais/genética , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/patogenicidade , Tilápia/imunologia , Tilápia/microbiologia
6.
Sci Total Environ ; 664: 322-333, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743125

RESUMO

Total suspended matters (TSMs), as the sediment precursor, directly affect the mass exchange and sedimentation in the East China Sea (ECS). Ultrafine suspended matters (USMs) are an important component of the TSMs, and may play a significant role in regulating pollutant transfer and shaping biological communities. However, the conventional filtration may cause the loss of USMs because the filter membranes with the pore size of 0.45 µm were adopted to collect TSMs; and consequently, no data on USMs are currently available in continental shelves. In this study, the TSMs and USMs in the wintertime in the ECS were collected by using the filter membranes with the pore size of 0.22 µm for investigating their compositions, distributions and exchanges for the first time. The results show that the TSMs consisted of mineral particles (35-80%), biological fragments (10-50%), and flocs (10-40%); and mainly accumulated along the coastal belt and in southwest of the Cheju Island. Comparatively, the USMs were composed of fine biological fragments (10-70%), mineral particles (15-70%), and unrecognizable particles with various shapes (15-35%). They exhibited a clear heterogeneous distribution, namely, accumulated along the coastal belt and outer shelf, but dispersed in the mid-shelf, implying that USMs might be jointly controlled by biological activities, terrestrial inputs and hydrodynamic system in the ECS and the Yellow Sea. The distinct distribution difference between TSMs and USMs denotes their different exchange styles, i.e., for TSMs active in north of the ECS, and weak along the coastal front zone and 100 m isobath; while for USMs almost inactive along the coastal front zone, and active in the outer shelf. Our results may provide a novel clue for evaluating the contribution of TSMs to sedimentation, pollutant transfer and maintenance of marine biological communities with emphasis on the new method for collecting TSMs and USMs in the ECS.

7.
Molecules ; 24(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634712

RESUMO

Humic substances in soil are considered to be an alternative food to the tender plant roots for Thitarodes larvae in the habitats of Ophiocordyceps sinensis in the Qinghai-Tibetan Plateau. However, there is no report involving the evaluation of their potential as a food source from the composition and structure of habitat soils. In this work, the composition and structure of humic substances in habitat soils from the Sejila Mountain, Tibet were characterized by diverse techniques for evaluating the nutritional value and possibility of humus as the food source for Thitarodes larvae. Fourier transform infrared spectroscopy revealed that humic acid may possess superior ability to provide the molecular segments for biosynthesizing lipids more than other humic fractions. Combining with the analysis of solid-state 13C nuclear magnetic resonance spectrum, the fractions of hydrophobic fulvic acid and hydrophilic fulvic acid are further considered as a potential food source for Thitarodes larvae. Overall, humic substances in habitat soils are rich in the molecular segments for biosynthesizing lipids and other important nutrients, which may provide the energy and material sources for maintaining the survival of Thitarodes larvae in the absence of tender plant roots, particularly in the annual cold winter. Combining with the evidence of physico-chemical parameters of habitat soils and stable carbon isotopic composition of major tender plant roots in the Sejila Mountain, the composition and structure of humic substances in habitat soils may provide a novel idea for the eco-friendly and semi-wild cultivation of Thitarodes larvae with low cost.


Assuntos
Substâncias Húmicas/análise , Hypocreales/crescimento & desenvolvimento , Lepidópteros/fisiologia , Solo/química , Ração Animal , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Ecossistema , Larva/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Tibet
8.
Molecules ; 24(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696009

RESUMO

Biomarkers from methane hydrate-bearing sediments can provide vital evidence for microbial activities associated with methanogenesis and their relation to the formation of methane hydrates. However, the former mainly focus on intact polar lipids from these microorganisms, and rarely investigate molecular hydrocarbons such as acyclic isoprenoids and hopanes so far. In this work, the composition of biomarkers in the methane hydrate-bearing sediments in cores SH2B and SH7B from the Shenhu area, the South China Sea (SCS) were identified by gas chromatography-mass spectrometry (GC-MS) and comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC-TOFMS). The occurrence of unresolved complex mixtures (UCMs) and 25-norhopane indicate that the organic matters in methane hydrate-bearing sediments underwent a high degree of biodegradation. Although specific biomarkers for methanogens were not identified, the UCMs, 25-norhopane, pristane, phytane, and hopanes can still indicate the microbial activities associated with methanogenesis. These molecular signals suggest that diverse microorganisms, particularly methanogens, were quite vigorous in the methane hydrate-bearing sediments. Further, the biomarkers identified in this study can also be steadily detected from deep oil/gas reservoirs. Considering numerous adjacent oil/gas reservoir systems, fault systems, and mud diapers occurred in the SCS, it can be inferred that microbial activities and deep oil/gas reservoirs may have jointly contributed to the formation of methane hydrate deposits in the SCS.


Assuntos
Biomarcadores , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Metano/análise , China , Cromatografia Gasosa-Espectrometria de Massas , Geografia , Sedimentos Geológicos/microbiologia , Microbiota , Oceanos e Mares
9.
Sci Rep ; 8(1): 5028, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29555964

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

10.
Sci Rep ; 7(1): 7789, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798416

RESUMO

For more than one thousand years, Cordyceps sinensis has been revered as a unique halidom in the Qinghai-Tibetan Plateau for its mysterious life history and predominant medicinal values. This mysterious fungus-larva symbiote also attracted the over-exploitation, while several problems on the initial colonization of Ophiocordyceps sinensis in the host larva have constrained artificial cultivation. In this work, stable carbon isotope analysis was employed to analyse the subsamples of C. sinensis from 5 representative habitats. The results demonstrated that these samples possessed similar δ13C profiles, i.e., a steady ascending trend from the top to the bottom of stroma, occurrence of the δ13C maximum at the head, a slight decrease from the head to the end of thorax, a sharply descent trend from the end of thorax to the forepart of abdomen, and maintenance of lower δ13C values in the rest parts of abdomen. Based on the data, we consider that the site near the head of the host larva may be the initial target attacked by O. sinensis, and the fungus growth is closely related to the digestive tract of its host larva. The growth stages of O. sinensis are accordingly speculated as the symptom-free, symptom-appearing, and stroma-germinating stages.


Assuntos
Cordyceps/patogenicidade , Interações Hospedeiro-Patógeno , Lepidópteros/microbiologia , Animais , Isótopos de Carbono/análise , Cordyceps/crescimento & desenvolvimento , Larva/microbiologia , Lepidópteros/crescimento & desenvolvimento , Estações do Ano
11.
Front Microbiol ; 8: 1507, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848520

RESUMO

Petroleum pollution is a severe environmental issue. Comprehensively revealing the genetic backgrounds of hydrocarbon-degrading microorganisms contributes to developing effective methods for bioremediation of crude oil-polluted environments. Marine bacterium Achromobacter sp. HZ01 is capable of degrading hydrocarbons and producing biosurfactants. In this study, the draft genome (5.5 Mbp) of strain HZ01 has been obtained by Illumina sequencing, containing 5,162 predicted genes. Genome annotation shows that "amino acid metabolism" is the most abundant metabolic pathway. Strain HZ01 is not capable of using some common carbohydrates as the sole carbon sources, which is due to that it contains few genes associated with carbohydrate transport and lacks some important enzymes related to glycometabolism. It contains abundant proteins directly related to petroleum hydrocarbon degradation. AlkB hydroxylase and its homologs were not identified. It harbors a complete enzyme system of terminal oxidation pathway for n-alkane degradation, which may be initiated by cytochrome P450. The enzymes involved in the catechol pathway are relatively complete for the degradation of aromatic compounds. This bacterium lacks several essential enzymes for methane oxidation, and Baeyer-Villiger monooxygenase involved in the subterminal oxidation pathway and cycloalkane degradation was not identified. These results suggest that strain HZ01 degrades n-alkanes via the terminal oxidation pathway, degrades aromatic compounds primarily via the catechol pathway and cannot perform methane oxidation or cycloalkane degradation. Additionally, strain HZ01 possesses abundant genes related to the metabolism of secondary metabolites, including some genes involved in biosurfactant (such as glycolipids and lipopeptides) synthesis. The genome analysis also reveals its genetic basis for nitrogen metabolism, antibiotic resistance, regulatory responses to environmental changes, cell motility, and material transport. The obtained genome data provide us with a better understanding of hydrocarbon-degrading bacteria, which may contribute to the future design of rational strategies for bioremediation of petroleum-polluted marine environments.

12.
Gene ; 584(2): 185-94, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26915487

RESUMO

Microbial remediation has become one of the most important strategies for eliminating petroleum pollutants. Revealing the transcript maps of microorganisms with the hydrocarbon-degrading ability contributes to enhance the degradation of hydrocarbons and further improve the effectiveness of bioremediation. In this study, we characterized the transcriptome of hydrocarbon-degrading Achromobacter sp. HZ01 after petroleum treatment for 16h. A total of 38,706,280 and 38,954,413 clean reads were obtained by RNA-seq for the petroleum-treated group and control, respectively. By an effective de novo assembly, 3597 unigenes were obtained, including 3485 annotated transcripts. Petroleum treatment had significantly influenced the transcriptional profile of strain HZ01, involving 742 differentially expressed genes. A part of genes were activated to exert specific physiological functions, whereas more genes were down-regulated including specific genes related to cell motility, genes associated with glycometabolism, and genes coding for ribosomal proteins. Identification of genes related to petroleum degradation revealed that the fatty acid metabolic pathway and a part of monooxygenases and dehydrogenases were activated, whereas the TCA cycle was inactive. Additionally, terminal oxidation might be a major aerobic pathway for the degradation of n-alkanes in strain HZ01. The newly obtained data contribute to better understand the gene expression profiles of hydrocarbon-degrading microorganisms after petroleum treatment, to further investigate the genetic characteristics of strain HZ01 and other related species and to develop cost-effective and eco-friendly strategies for remediation of crude oil-polluted environments.


Assuntos
Achromobacter/genética , Hidrocarbonetos/metabolismo , Transcriptoma , Achromobacter/metabolismo , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...